

Приложение:
Номер начального наблюдения - 17
Номер конечного наблюдения - 96
Номер признаков из Приложения - 2,5
Задание № 1
На основе данных, приведенных в Приложении и соответствующих Вашему варианту требуется:
1. Построить уравнение линейной парной регрессии одного признака от другого. Один из признаков, соответствующих Вашему варианту, будет играть роль факторного (X), другой - результативного (Y). Причинно-следственные связи между признаками установить самим на основе экономического анализа. Пояснить смысл параметров уравнения.
2. Рассчитать линейный коэффициент парной корреляции и коэффициент детерминации. Сделать выводы.
3. Оценить статистическую значимость параметров регрессии и коэффициента корреляции с уровнем значимости 0,05.
4. Выполнить прогноз ожидаемого значения признака-результата Y при прогнозном значении признака-фактора X, составляющим 105% от среднего уровня X. Оценить точность прогноза, рассчитав ошибку прогноза и его доверительный интервал с вероятностью 0,95.
Задание № 2
На основе данных, приведенных в Приложении и соответствующих Вашему варианту (таблица 1), требуется:
1. Построить уравнение множественной регрессии. Для этого, оставив признак-результат тем же выбрать несколько признаков-факторов из приложения 1 (границы их наблюдения должны совпадать с границами наблюдения признака-результата, соответствующих Вашему варианту). При выборе факторов нужно руководствоваться как экономическим содержанием, так и формальными подходами (например, матрица парных коэффициентов корреляции). Пояснить смысл параметров уравнения.
2. Рассчитать частные коэффициенты эластичности.
3. Определить стандартизованные коэффициенты регрессии (0-коэффициенты).
4. На основе полученных результатов сделать вывод о силе связи результата с каждым из факторов.
5. Определить парные и частные коэффициенты корреляции, а также множественный коэффициент корреляции; сделать выводы.
6. Дать оценку полученного уравнения с помощью общего F-критерия Фишера.
